Identification of a Class of Discrete Event Systems by Neural Networks - Sparse Realization -

نویسندگان

  • Yasuaki Kuroe
  • Yoshihiro Mori
چکیده

In analysis and design of a system, the first goal is to obtain an appropriate model of the system. Because of the complex dynamics of discrete event systems (DESs), it is very difficult to obtain a model of unknown DESs from given input and output data. This paper discusses an identification and realization method of a class of DESs by neural networks. We consider a class of DESs which is modeled by using finite state automata. In identification and realization of systems by using neural networks, it is essentially important to develop a suitable architecture of neural networks. We already proposed two neural network architectures: one is a class of recurrent neural networks and the other is a class of recurrent high-order neural networks, which are capable of representing FSA with the network size being smaller than the existing neural network models. In this paper we present an identification method of DESs, which makes it possible to obtain sparse realization, that is, to obtain networks with simpler structure. It is shown through numerical experiments that presented method makes it possible to obtain simpler neural networks which can exactly simulate target DESs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Partial Observation in Distributed Supervisory Control of Discrete-Event Systems

Distributed supervisory control is a method to synthesize local controllers in discrete-eventsystems with a systematic observation of the plant. Some works were reported on extending this methodby which local controllers are constructed so that observation properties are preserved from monolithic todistributed supervisory control, in an up-down approach. In this paper, we find circumstances in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008